INTRODUCTION TO LOGISTIC REGRESSION Session 4

PRESENTED BY: IMEN HAMMAMI

OXPAL RESEARCH FELLOWSHIP SERIES 2021

February, 2020

What will this session tell you?

Understand when to use logistic regression (LR).
Interpret a LR model with a binary exposure variable.
Assess model fit.

= nan

Your new friend

Jane Superbrain 2.0

- She steals the brains of top statisticians.
- $\odot\,$ She appears in red boxes to tell you really important things.

= nar

Content

1 From linear to logistic regression

- The linear model
- Redefining the dependent variable

2 The logistic regression model

- The unadjusted model
- Adjusting for confounders

3 Assessing model fit

- Classification threshold
- Performance of a classification model

글 에 에 글 어

= nar

The linear model Redefining the dependent variable

Layout

1 From linear to logistic regression

- The linear model
- Redefining the dependent variable

2 The logistic regression model

- The unadjusted model
- Adjusting for confounders

3 Assessing model fit

- Classification threshold
- Performance of a classification model

ELE NOR

The linear model Redefining the dependent variable

Recap

Regression models are used to:

- Describe relationship between 2 or more variables where one of these is 'dependent' ('response', 'outcome').
- Predict the value of the dependent variable for a given value of the independent variable.

We can describe the linear relationship between y and x as: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 \ x_i$

We can use the linear model to investigate the association between number of hours studying and exam scores as: $exam^{s}score = \hat{\beta}_{0} + \hat{\beta}_{1} \text{ hours studying}$

イロト イポト イヨト イヨト ヨ

The logistic regression model Assessing model fit The linear model Redefining the dependent variable

Exam score

We could describe the linear relationship between hours studying and exam scores using the linear regression model: $score = \hat{\beta}_0 + \hat{\beta}_1$ hours

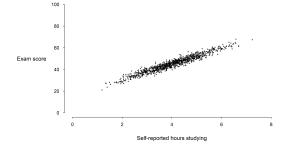


Figure 1: Exam scores versus hours studying.

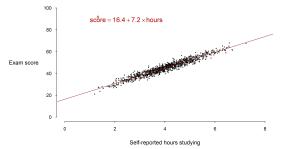
イロト イヨト イヨト イヨト

Sac

The logistic regression model Assessing model fit The linear model Redefining the dependent variable

Exam score (Cont.)

Using the equation of the regression line, calculate the estimated exam score for hours studying= 6.



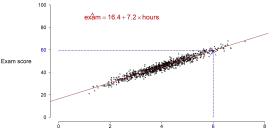
イロト イヨト イヨト イヨト

Figure 1 (Cont.): Exam scores versus hours studying.

The logistic regression model Assessing model fit The linear model Redefining the dependent variable

Exam score (Cont.)

Using the equation of the regression line, calculate the estimated exam score for hours studying= 6.



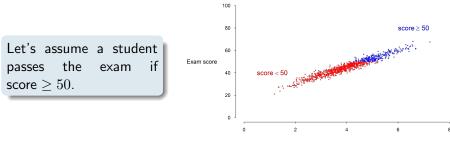
Self-reported hours studying

イロト イヨト イヨト イヨト

Figure 1 (Cont.): Exam scores versus hours studying.

The logistic regression model Assessing model fit The linear model Redefining the dependent variable

Exam score (Cont.)



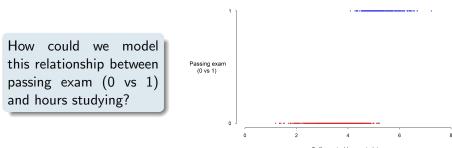
Self-reported hours studying

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Figure 1 (Cont.): Exam scores versus hours studying.

The logistic regression model Assessing model fit The linear model Redefining the dependent variable

Passing exam (0 vs 1)



Self-reported hours studying

<ロ> <同> <日> <日> <日> <日> <日> <日</p>

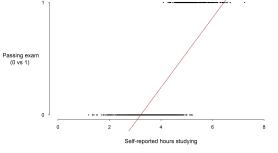
Figure 2: Passing exam versus hours studying.

The linear model Redefining the dependent variable

Passing exam (0 vs 1) (Cont.)

The line does not fit the data very well. It goes below 0 and above 1.

If we take values of Y between 0 and 1 to be probabilities, this does not make sense.



イロト イヨト イヨト イヨト

I DOG

Figure 2 (Cont.): Passing exam versus hours studying.

The linear model Redefining the dependent variable

Probability of passing exam [0,1]

How could we link the probability of passing exam to the continuous predictor 'hours studying'? The risk is constrained to fall in the interval [0,1].

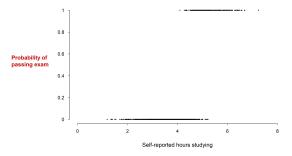


Figure 3: Probability of passing exam versus hours studying.

S-shaped curve

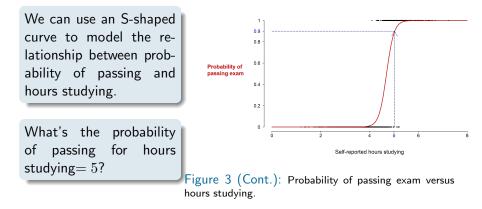
Assessing model fit

The linear model

We can use a S-shaped curve to model the re-0.8 lationship between prob-0.6 Probability of ability of passing and passing exam 0.4 hours studying. 0.2 0 What's the probability 2 в of passing for hours Self-reported hours studying studying = 5?Figure 3 (Cont.): Probability of passing exam versus hours studying.

S-shaped curve

The linear model Redefining the dependent variable



The linear model Redefining the dependent variable

S-shaped curve (Cont.)

What's the minimum number of hours studying required for $\geq 50\%$ chance to pass exam?

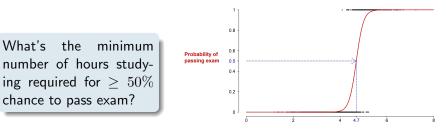
Self-reported hours studying

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Figure 3 (Cont.): Probability of passing exam versus hours studying.

The linear model Redefining the dependent variable

S-shaped curve (Cont.)



Self-reported hours studying

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Figure 3 (Cont.): Probability of passing exam versus hours studying.

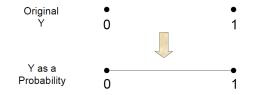
The linear model Redefining the dependent variable

Original Y (disease 0 vs 1)

We need to transform the dichotomous Y into a continuous variable Y'. We need a (link) function that takes a dichotomous Y and gives us a continuous Y'.

The logistic regression model Assessing model fit The linear model Redefining the dependent variable

Y as probability [0,1]



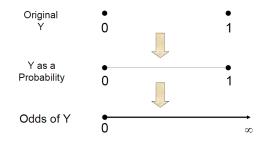
If we work with Y as a probability, what function F(Y) goes from [0,1] interval to the real line? We know at least one function that goes the other way round (but we won't use that one!).

From linear to logistic regression The logistic regression model

Assessing model fit

The linear model Redefining the dependent variable

Odds of Y

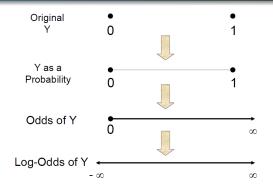


Let's look at an alternative approach based on odds.

Taking the odds of Y occurring moves us from the [0,1] interval to the half-line [0, $+\infty$ [(odds are always non-negative).

The logistic regression model Assessing model fit

Log-odds of Y

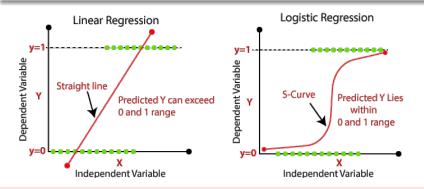


As a final step, let's take the log of the odds. This is called the logit function: $Y' = \text{logit}(Y) = \log(\text{odds } Y) = \log(Y/(1-Y))$ (Y as probability of disease).

The linear model Redefining the dependent variable

The logistic model

The smooth S-shaped curve is known as the logistic (or logit) model.



Assuming a linear relationship between log(odds Y) and a predictor X, we can fit a linear regression model with log(odds Y) as the dependent variable and X as the independent variable.

The linear model Redefining the dependent variable

Important points

Jane Superbrain 2.0

Properties of the logistic model:

- Allows for a smooth change in risk throughout the range of X.
- Has the property that risk increases slowly up to a threshold range of X, followed by a more rapid increase and a subsequent leveling off of risk.
- This shape is consistent with many dose response relationships (e.g. likelihood of toxicity response to varying levels of treatment).

The unadjusted model Adjusting for confounders

Layout

From linear to logistic regression The linear model

- Redefining the dependent variable
- 2 The logistic regression model
 - The unadjusted model
 - Adjusting for confounders

3 Assessing model fit

- Classification threshold
- Performance of a classification model

ELE NOR

The unadjusted model Adjusting for confounders

Heart data

Consider a prospective cohort study conducted for the purpose of studying the determinants of ischaemic heart disease (IHD) among 844 men without prior cardiovascular disease.

The men were subsequently followed-up for 10 years, at which point the investigators wanted to assess whether baseline levels of serum cholesterol were associated with IHD mortality.

The investigators conducted a nested case-control study of 68 IHD cases and 138 controls from the main cohort and measured cholesterol levels in these participants.

2x2 Contingency Table

The following Stata output shows the cross-tabulation of the number of participants with a diagnosis of IHD by baseline serum cholesterol (high versus low).

. tab ihd hichol1, m

Ischaemic	High serum			
heart	cholesterol			
disease	0	1	Total	
0	73	65	138	
	24	44	68	
Total	97	109	206	

- Calculate proportions with IHD in those with and without high cholesterol.
- ② Calculate odds of IHD in those with and without high cholesterol.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ★ □ ▶ ◆□ ▶ ◆ □ ▶

The unadjusted model Adjusting for confounders

2x2 Contingency Table (Cont.)

. tab ihd hichol1, m

Ischaemic	High serum		
heart	cholesterol		
disease	0	1	Total
0	73	65	138
1	24	44	68
Total	97	109	206

Proportions

$$P(\mathsf{ihd} = 1|\mathsf{hichol} = 1) = 44/(44 + 65) = 0.40$$

 $P(\mathsf{ihd} = 1|\mathsf{hichol} = 0) = 24/(24 + 73) = 0.25$

The unadjusted model Adjusting for confounders

2x2 Contingency Table (Cont.)

. tab ihd hichol1, m

Ischaemic	High serum			
heart	cholesterol			
disease	0	1	Total	
0	73	65	138	
	24	44	68	
Total	97	109	206	

Odds

odds(ihd = 1|hichol = 1) =
$$44/65 = 0.68$$

odds(ihd = 1|hichol = 0) = $24/73 = 0.33$

Odds ratio

odds ratio = odds(ihd = 1|hichol = 1)/odds(ihd = 1|hichol = 0) = 0.68/0.33 = 2.06

The simple logistic regression model

Suppose a logistic regression of ischemic heart disease (ihd) on high baseline serum cholesterol (hichol1) is performed: $log(odds \text{ of ihd}) = \beta_0 + \beta_1 lichol1$

Based on the equation above, what are β_0 and β_1 ?

For an unexposed person (i.e. with low cholesterol), substitute hichol1 = 0 into the model:

$$og(odds of ihd) = \beta_0 + \beta_1 \times 0 = \beta_0$$

 β_0 is log odds in unexposed.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

The simple logistic regression model (Cont.)

Suppose a logistic regression of ischemic heart disease (ihd) on high baseline serum cholesterol (hichol1) is performed: $log(odds \text{ of ihd}) = \beta_0 + \beta_1 hichol1$

For an exposed person (i.e. with low cholesterol), substitute hichol1 = 1 into the model:

 $\log(\text{odds of ihd}) = \beta_0 + \beta_1 \times 1 = \beta_0 + \beta_1$

The calculation above could be rewritten as follows

 $\beta_1 = \log(\text{odds in exposed}) - \beta_0$

 $= \log(\text{odds in exposed}) - \log(\text{odds in unexposed})$

 $= \log(\text{odds in exposed}/\text{odds in unexposed})$

 $= \log(\text{odds ratio})$

 β_1 is log odds ratio.

The simple logistic regression model (Cont.)

Based on our previous calculations (2x2 table): OR = 2.06 odds in unexposed = 0.33

The logistic regression of ischemic heart disease (ihd) on high baseline serum cholesterol (hichol1) is given by: $log(odds \text{ of ihd}) = \beta_0 + \beta_1 \text{hichol1}$ $= log(0.33) + log(2.06) \times \text{hichol1}$ $= -1.11 + 0.72 \times \text{hichol1}$

The unadjusted model Adjusting for confounders

Fitting a logistic regression model

. *-- log scale;

. logit ihd hichol1, noheader nolog

ihd	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
hichol1	0.722	0.306	2.36	0.018	0.123	1.321
_cons	-1.112	0.235	-4.73	0.000	-1.574	-0.651

 $\log(\text{odds of ihd}) = -1.11 + 0.72 \times \text{hichol}1$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

The unadjusted model Adjusting for confounders

Interpretation

- . *-- get ORs;
- . logit ihd hichol1, or noheader nolog

ihd	Odds Ratio	Std. Err.	Z	P> z	[95% Conf.	Interval]
hichol1	2.059	0.630		0.018	1.131	3.749
_cons	0.329	0.077		0.000	0.207	0.521

Note: _cons estimates baseline odds.

A person with high cholesterol have a 2-fold higher odds of IHD as compared to a person with low cholesterol (OR=2.06 [1.13, 3.75], p = 0.018).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ●

Important points

Jane Superbrain 2.0

• In logistic regression, we model the log (odds of disease) as the outcome:

```
\log(\text{odds of disease}) = \beta_0 + \beta_1 x
```

where

$$\beta_0 = \log \text{ odds in the unexposed}$$

 $\beta_1 = \log\,\mathsf{OR}$

- We use this model to estimate log OR and hence OR (with 95% CI, p-value).
- We use a statistics package to fit logistic regression models.
- Estimation is done using the method of maximum likelihood*.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ★ □ ▶ ◆ □ ▶ ◆ ○ ◆

The unadjusted model Adjusting for confounders

Important points (Cont.)

Jane Superbrain 2.0

Study designs in which logistic regression may be used:

A cross-sectional study

Model parameters are interpreted as above.

If outcome is not rare, then OR will overestimate the risk ratio.

• An unmatched case-control study

Parameter β_1 is log OR, but β_0 (log odds in unexposed) is not interpretable.

イロト イポト イヨト イヨト

= 990

Confounding by age

Looking at the regression results below, describe the impact of age on the association between IHD and baseline serum cholesterol.

. logit ihd hichol1, or noheader nolog						
ihd	Odds Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
hichol1 _cons	2.059 0.329	0.630 0.077	2.36 -4.73	0.018 0.000	1.131 0.207	3.749 0.521

. logit ihd hichol1 age, or noheader nolog

ihd	Odds Ratio	Std. Err.	Z	P> z	[95% Conf.	Interval]
hichol1	1.884	0.596	2.00	0.045	1.014	3.502
age	1.071	0.021	3.56	0.000	1.031	1.112
_cons	0.008	0.009	-4.41	0.000	0.001	0.069

The unadjusted model Adjusting for confounders

Confounding by age (Cont.)

•	logit	ihd	hichol1,	noheader	nolog	
---	-------	-----	----------	----------	-------	--

ihd	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
hichol1	0.722	0.306	2.36	0.018	0.123	1.321
_cons	-1.112	0.235	-4.73	0.000	-1.574	-0.651

. logit ihd hichol1 age, noheader nolog

ihd	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
hichol1	0.633	0.316	2.00	0.045	0.014	1.253
age	0.068	0.019	3.56	0.000	0.031	0.106
_cons	-4.808	1.090	-4.41	0.000	-6.945	-2.672

The confounding effect of age can be quantified by computing the percentage difference between the crude and adjusted coefficients $(\beta_{unadjusted}-\beta_{adjusted})/\beta_{unadjusted}$ (~ 12%)

Classification threshold Performance of a classification model

Layout

1 From linear to logistic regression

- The linear model
- Redefining the dependent variable
- 2 The logistic regression model
 - The unadjusted model
 - Adjusting for confounders

3 Assessing model fit

- Classification threshold
- Performance of a classification model

A (10) A (10)

ELE NOR

Classification threshold Performance of a classification model

Hits and misses

What percent of the observation the model correctly predicts?

- . qui logit ihd hichol1 age, noheader nolog
- . 1stat

Logistic model for ihd

True							
Classified	D	~D	Total				
+	14 54	10 128	24 182				
Total	68	138	206				

Classified + if predicted $Pr(D) \ge .5$ True D defined as ihd != 0

Hits and misses (Cont.)

- Use model to generate the probability p that each observation will have the disease.
- **2** Use a cutoff $\pi = 0.5$. If $p \ge \pi$ predict ihd= 1, if $p < \pi$ predict ihd= 0.
- O Check predictions against the actual outcomes in the data.

. qui logit ihd hichol1 age, noheader nolog

. lstat

Logistic model for ihd

	True					
Classified	D	~D	Total			
+	14	10	24			
-	54	128	182			
Total	68	138	206			
Classified + if predicted $Pr(D) >= .5$						
True D defined as ihd != 0						
	Imor	Hammami	Introduction to Lo			

Classification threshold Performance of a classification model

Hits and misses (Cont.)

Output shows summary of correct and incorrect predictions.

Classified + if predicted $Pr(D) \ge .5$ True D defined as ihd != 0				
Sensitivity	Pr(+ D)	20.59%		
Specificity	Pr(- ~D)	92.75%		
Positive predictive value	Pr(D +)	58.33%		
Negative predictive value	Pr(~D -)	70.33%		
False + rate for true ~D	Pr(+ ~D)	7.25%		
False - rate for true D	Pr(- D)	79.41%		
False + rate for classified +	Pr(~D +)	41.67%		
False - rate for classified -	Pr(D -)	29.67%		
Correctly classified	68.93%			

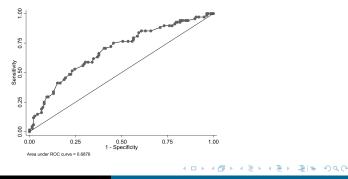
Overall success rate = (14 + 128)/206 = 68.93%

Classification threshold Performance of a classification model

ROC curve

We can imagine changing the cutoff point π continuously from 0 to 1. The ROC curve plots the sensitivity ($S_e = P(+|D)$) and 1-specificity ($S_p = P(-|\bar{D})$) as π goes from 0 to 1.

Area under the curve is 0.6876.



Imen Hammami Introduction to Logistic Regression

Classification threshold Performance of a classification model

Important points

Jane Superbrain 2.0

Using logistic regression to make a classifier

The goal here is to model and predict if a given observation (row in dataset) has disease or not based on other variables/features in the dataset.

- Split dataset into training, validation and test sets.
- **2** Build logistic (logit) model on the training set.
- **③** Tune the parameters of the classifier on the validation set.
- Assess model performance using the test set.

What did this session tell you?

Understand when to use logistic regression (LR).
Interpret a LR model with a binary exposure variable.
Assess model fit.

白とくほとくほど

Matching cases and controls based on age

The relationship between IHD and baseline serum cholesterol (low versus high) was further investigated by identifying each individual who developed IHD and matching that person, based on age, to an individual who had not developed IHD.

The count data on the resulting matches are tabulated below.

Not developing IHD (controls)		
Developing IHD (cases)	High cholesterol	Low cholesterol
High cholesterol	20	21
Low cholesterol	11	16

Based on these data, calculate the odds ratio for the association between IHD and serum cholesterol level (high versus low) among individuals of the same age.

Matching cases and controls based on age (Cont.)

This is a matched case-control study and the estimated odds ratio is based on the discordant pairs b & c.

b is the number of pairs in which emp developing IHD have high baseline serum cholesterol and their matched emp not developing IHD have low baseline serum cholesterol.

c is number of pairs in which emp developing IHD have low baseline serum cholesterol and their matched emp not developing IHD have high baseline serum cholesterol.

(本部) (문) (문) 문

Matching cases and controls based on age (Cont.)

	Not developing IHD (controls)		
Developing IHD (cases)	High cholesterol	Low cholesterol	
High cholesterol	20	21	
Low cholesterol	11	16	

OR = b/c = 21/11 = 1.9

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶