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What will this session tell you?

Understand when to use logistic regression (LR).

Interpret a LR model with a binary exposure variable.

Assess model fit.
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Your new friend

Jane Superbrain 2.0

She steals the brains of top statisticians.

She appears in red boxes to tell you really important things.
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Recap

Regression models are used to:

Describe relationship between 2 or more variables where one of these
is ‘dependent’ (‘response’, ‘outcome’).

Predict the value of the dependent variable for a given value of the
independent variable.

We can describe the linear relationship between y and x as:
ŷi = β̂0 + β̂1 xi

We can use the linear model to investigate the association between num-
ber of hours studying and exam scores as:

ˆexam score = β̂0 + β̂1 hours studying
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Exam score

We could describe the
linear relationship be-
tween hours studying and
exam scores using the lin-
ear regression model:

ˆscore = β̂0 + β̂1 hours
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Figure 1: Exam scores versus hours studying.
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Exam score (Cont.)

Using the equation of the
regression line, calculate
the estimated exam score
for hours studying= 6.
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Exam score (Cont.)

Let’s assume a student
passes the exam if
score ≥ 50.
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Figure 1 (Cont.): Exam scores versus hours studying.
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Passing exam (0 vs 1)

How could we model
this relationship between
passing exam (0 vs 1)
and hours studying?
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Figure 2: Passing exam versus hours studying.
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Passing exam (0 vs 1) (Cont.)

The line does not fit the
data very well. It goes
below 0 and above 1.

If we take values of Y be-
tween 0 and 1 to be prob-
abilities, this does not
make sense.
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Figure 2 (Cont.): Passing exam versus hours studying.
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Probability of passing exam [0,1]

How could we link the
probability of passing
exam to the contin-
uous predictor ‘hours
studying’? The risk is
constrained to fall in the
interval [0,1].
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Figure 3: Probability of passing exam versus hours study-
ing.
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S-shaped curve

We can use a S-shaped
curve to model the re-
lationship between prob-
ability of passing and
hours studying.

What’s the probability
of passing for hours
studying= 5?
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Figure 3 (Cont.): Probability of passing exam versus
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S-shaped curve (Cont.)

What’s the minimum
number of hours study-
ing required for ≥ 50%
chance to pass exam?
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Figure 3 (Cont.): Probability of passing exam versus
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Original Y (disease 0 vs 1)

We need to transform the dichotomous Y into a continuous variable Y’.
We need a (link) function that takes a dichotomous Y and gives us a
continuous Y’.
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Y as probability [0,1]

If we work with Y as a probability, what function F(Y) goes from [0,1]
interval to the real line? We know at least one function that goes the
other way round (but we won’t use that one!).
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Odds of Y

Let’s look at an alternative approach based on odds.

Taking the odds of Y occurring moves us from the [0,1] interval to the
half-line [0, +∞[ (odds are always non-negative).
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Log-odds of Y

As a final step, let’s take the log of the odds.
This is called the logit function:

Y ′ = logit(Y ) = log(odds Y ) = log(Y/(1− Y ))
(Y as probability of disease).
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The logistic model

The smooth S-shaped curve is known as the logistic (or logit) model.

Assuming a linear relationship between log(odds Y) and a predictor X,
we can fit a linear regression model with log(odds Y) as the dependent
variable and X as the independent variable.
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Important points

Jane Superbrain 2.0

Properties of the logistic model:

Allows for a smooth change in risk throughout the range of X.

Has the property that risk increases slowly up to a threshold range
of X, followed by a more rapid increase and a subsequent leveling
off of risk.

This shape is consistent with many dose response relationships (e.g.
likelihood of toxicity response to varying levels of treatment).
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Heart data

Consider a prospective cohort study conducted for the purpose of study-
ing the determinants of ischaemic heart disease (IHD) among 844 men
without prior cardiovascular disease.

The men were subsequently followed-up for 10 years, at which point the
investigators wanted to assess whether baseline levels of serum choles-
terol were associated with IHD mortality.

The investigators conducted a nested case-control study of 68 IHD cases
and 138 controls from the main cohort and measured cholesterol levels
in these participants.
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2x2 Contingency Table

The following Stata output shows the cross-tabulation of the number of
participants with a diagnosis of IHD by baseline serum cholesterol (high
versus low).

. tab ihd hichol1, m

Ischaemic High serum
heart cholesterol

disease 0 1 Total

0 73 65 138
1 24 44 68

Total 97 109 206

1 Calculate proportions with IHD in those with and without high
cholesterol.

2 Calculate odds of IHD in those with and without high cholesterol.
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2x2 Contingency Table (Cont.)

. tab ihd hichol1, m

Ischaemic High serum
heart cholesterol

disease 0 1 Total

0 73 65 138
1 24 44 68

Total 97 109 206

Proportions

P (ihd = 1|hichol = 1) = 44/(44 + 65) = 0.40

P (ihd = 1|hichol = 0) = 24/(24 + 73) = 0.25
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2x2 Contingency Table (Cont.)

. tab ihd hichol1, m

Ischaemic High serum
heart cholesterol

disease 0 1 Total

0 73 65 138
1 24 44 68

Total 97 109 206

Odds

odds(ihd = 1|hichol = 1) = 44/65 = 0.68

odds(ihd = 1|hichol = 0) = 24/73 = 0.33

Odds ratio

odds ratio = odds(ihd = 1|hichol = 1)/odds(ihd = 1|hichol = 0)

= 0.68/0.33 = 2.06
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The simple logistic regression model

Suppose a logistic regression of ischemic heart disease (ihd) on high
baseline serum cholesterol (hichol1) is performed:

log(odds of ihd) = β0 + β1hichol1

Based on the equation above, what are β0 and β1?

For an unexposed person (i.e. with low cholesterol), substitute hichol1 =
0 into the model:

log(odds of ihd) = β0 + β1 × 0 = β0
β0 is log odds in unexposed.
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The simple logistic regression model (Cont.)

Suppose a logistic regression of ischemic heart disease (ihd) on high
baseline serum cholesterol (hichol1) is performed:

log(odds of ihd) = β0 + β1hichol1

For an exposed person (i.e. with low cholesterol), substitute hichol1 = 1
into the model:

log(odds of ihd) = β0 + β1 × 1 = β0 + β1

The calculation above could be rewritten as follows
β1 = log(odds in exposed)− β0

= log(odds in exposed)− log(odds in unexposed)

= log(odds in exposed/odds in unexposed)

= log(odds ratio)
β1 is log odds ratio.
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The simple logistic regression model (Cont.)

Based on our previous calculations (2x2 table):
OR = 2.06
odds in unexposed = 0.33

The logistic regression of ischemic heart disease (ihd) on high baseline
serum cholesterol (hichol1) is given by:

log(odds of ihd) = β0 + β1hichol1

= log(0.33) + log(2.06)× hichol1

= −1.11 + 0.72× hichol1
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Fitting a logistic regression model

. *-- log scale;

. logit ihd hichol1, noheader nolog

ihd Coef. Std. Err. z P>|z| [95% Conf. Interval]

hichol1 0.722 0.306 2.36 0.018 0.123 1.321
_cons -1.112 0.235 -4.73 0.000 -1.574 -0.651

log(odds of ihd) = −1.11 + 0.72× hichol1
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Interpretation

. *-- get ORs;

. logit ihd hichol1, or noheader nolog

ihd Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

hichol1 2.059 0.630 2.36 0.018 1.131 3.749
_cons 0.329 0.077 -4.73 0.000 0.207 0.521

Note: _cons estimates baseline odds.

A person with high cholesterol have a 2-fold higher odds of IHD as
compared to a person with low cholesterol (OR=2.06 [1.13, 3.75],
p = 0.018).
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Jane Superbrain 2.0

In logistic regression, we model the log (odds of disease) as the
outcome:

log(odds of disease) = β0 + β1x

where

β0 = log odds in the unexposed

β1 = log OR

We use this model to estimate log OR and hence OR (with 95% CI,
p-value).

We use a statistics package to fit logistic regression models.

Estimation is done using the method of maximum likelihood*.
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Important points (Cont.)

Jane Superbrain 2.0

Study designs in which logistic regression may be used:

A cross-sectional study

Model parameters are interpreted as above.

If outcome is not rare, then OR will overestimate the risk ratio.

An unmatched case-control study

Parameter β1 is log OR, but β0 (log odds in unexposed) is not
interpretable.
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Confounding by age

Looking at the regression results below, describe the impact of age on
the association between IHD and baseline serum cholesterol.

. logit ihd hichol1, or noheader nolog

ihd Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

hichol1 2.059 0.630 2.36 0.018 1.131 3.749
_cons 0.329 0.077 -4.73 0.000 0.207 0.521

. logit ihd hichol1 age, or noheader nolog

ihd Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

hichol1 1.884 0.596 2.00 0.045 1.014 3.502
age 1.071 0.021 3.56 0.000 1.031 1.112

_cons 0.008 0.009 -4.41 0.000 0.001 0.069
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Confounding by age (Cont.)

. logit ihd hichol1, noheader nolog

ihd Coef. Std. Err. z P>|z| [95% Conf. Interval]

hichol1 0.722 0.306 2.36 0.018 0.123 1.321
_cons -1.112 0.235 -4.73 0.000 -1.574 -0.651

. logit ihd hichol1 age, noheader nolog

ihd Coef. Std. Err. z P>|z| [95% Conf. Interval]

hichol1 0.633 0.316 2.00 0.045 0.014 1.253
age 0.068 0.019 3.56 0.000 0.031 0.106

_cons -4.808 1.090 -4.41 0.000 -6.945 -2.672

The confounding effect of age can be quantified by computing the
percentage difference between the crude and adjusted coefficients
(βunadjusted-βadjusted)/βunadjusted (∼ 12%)
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Hits and misses

What percent of the observation the model correctly predicts?

. qui logit ihd hichol1 age, noheader nolog

. lstat

Logistic model for ihd

True
Classified D ~D Total

+ 14 10 24
- 54 128 182

Total 68 138 206

Classified + if predicted Pr(D) >= .5
True D defined as ihd != 0
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Hits and misses (Cont.)

1 Use model to generate the probability p that each observation will
have the disease.

2 Use a cutoff π = 0.5. If p ≥ π predict ihd= 1, if p < π predict
ihd= 0.

3 Check predictions against the actual outcomes in the data.

. qui logit ihd hichol1 age, noheader nolog

. lstat

Logistic model for ihd

True
Classified D ~D Total

+ 14 10 24
- 54 128 182

Total 68 138 206

Classified + if predicted Pr(D) >= .5
True D defined as ihd != 0
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Hits and misses (Cont.)

Output shows summary of correct and incorrect predictions.

Classified + if predicted Pr(D) >= .5
True D defined as ihd != 0

Sensitivity Pr( +| D) 20.59%
Specificity Pr( -|~D) 92.75%
Positive predictive value Pr( D| +) 58.33%
Negative predictive value Pr(~D| -) 70.33%

False + rate for true ~D Pr( +|~D) 7.25%
False - rate for true D Pr( -| D) 79.41%
False + rate for classified + Pr(~D| +) 41.67%
False - rate for classified - Pr( D| -) 29.67%

Correctly classified 68.93%

Overall success rate = (14 + 128)/206 = 68.93%
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ROC curve

We can imagine changing the cutoff point π continuously from 0 to 1.
The ROC curve plots the sensitivity (Se = P (+|D)) and 1−specificity
(Sp = P (−|D̄)) as π goes from 0 to 1.

Area under the curve is 0.6876.
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Important points

Jane Superbrain 2.0

Using logistic regression to make a classifier
The goal here is to model and predict if a given observation (row in
dataset) has disease or not based on other variables/features in the
dataset.

1 Split dataset into training, validation and test sets.

2 Build logistic (logit) model on the training set.

3 Tune the parameters of the classifier on the validation set.

4 Assess model performance using the test set.
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What did this session tell you?

Understand when to use logistic regression (LR).

Interpret a LR model with a binary exposure variable.

Assess model fit.
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Advanced topics Matched case-control studies

Matching cases and controls based on age

The relationship between IHD and baseline serum cholesterol (low versus
high) was further investigated by identifying each individual who devel-
oped IHD and matching that person, based on age, to an individual who
had not developed IHD.

The count data on the resulting matches are tabulated below.

Not developing IHD (controls)

Developing IHD (cases) High cholesterol Low cholesterol

High cholesterol 20 21
Low cholesterol 11 16

Based on these data, calculate the odds ratio for the association between
IHD and serum cholesterol level (high versus low) among individuals of
the same age.
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Advanced topics Matched case-control studies

Matching cases and controls based on age (Cont.)

This is a matched case-control study and the estimated odds ratio is
based on the discordant pairs b & c.

b is the number of pairs in which emp developing IHD have high baseline
serum cholesterol and their matched emp not developing IHD have low
baseline serum cholesterol.

c is number of pairs in which emp developing IHD have low baseline
serum cholesterol and their matched emp not developing IHD have high
baseline serum cholesterol.
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Matching cases and controls based on age (Cont.)

Not developing IHD (controls)

Developing IHD (cases) High cholesterol Low cholesterol

High cholesterol 20 21
Low cholesterol 11 16

OR =b/c= 21/11=1.9
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